Dimensi fraktal

Coastline of Britain measured using a 200 km scale
11.5 x 200 = 2300 km
Coastline of Britain measured using a 100 km scale
28 x 100 = 2800 km
Coastline of Britain measured using a 50 km scale
70 x 50 = 3500 km
Gambar 1. Karena panjang tongkat kayu yang dipakai untuk mengukur diskalakan dengan semakin mengecil, maka panjang total garis pantai yang diukur menjadi meningkat.

Dalam matematika, khususnya dalam geometri fraktal, dimensi fraktal adalah rasio yang memberikan kompleksitas indeks statistik dengan membandingkan bagaimana detail dalam pola fraktal berubah skalanya pada saat diukur. Hal ini juga telah dikarakteristikkan sebagai ukuran dari kapasitas kurva space-filling dari sebuah pola yang memperlihatkan bagaimana skala fraktal berbeda dengan ruang yang melekat pada pola tersebut; dimensi fraktal tidak harus berupa bilangan bulat.[1][2][3]

Gagasan penting mengenai dimensi yang "fraktur" ("patah") memiliki sejarah yang panjang dalam matematika, tetapi istilah itu sendiri diangkat ke permukaan oleh Benoit Mandelbrot berdasarkan makalahnya tahun 1967 mengenai kemiripan-diri yang membahas soal dimensi fraksional.[4] Dalam makalah tersebut, Mandelbrot mengutip karya Lewis Fry Richardson sebelumnya yang menjelaskan gagasan kontra-intuitif bahwa panjang garis pantai yang diukur berubah seiring dengan panjang tongkat pengukur yang digunakan. Dalam pengertian tersebut, dimensi fraktal garis pantai mengkuantifikasi berapa banyak tongkat pengukur berskala yang diperlukan untuk mengukur garis pantai berubah seiring dengan skala yang diterapkan pada tongkat tersebut.[5]

Pola fraktal berubah seiring dengan skala pengukurannya. Ini juga merupakan ukuran kapasitas pengisian ruang suatu pola, dan ini menunjukkan bagaimana skala fraktal berbeda, dalam dimensi fraktal (non-integer).[6][7][8]

Pada akhirnya, istilah dimensi fraktal menjadi ungkapan yang paling nyaman bagi Mandelbrot sendiri sehubungan dengan merangkum arti kata fraktal, sebuah istilah yang ia ciptakan. Setelah beberapa kali pengulangan selama bertahun-tahun, Mandelbrot memutuskan penggunaan bahasa ini: "... menggunakan fraktal tanpa definisi yang berlebihan, menggunakan dimensi fraktal sebagai istilah umum yang berlaku untuk semua varian."[9]

Salah satu contoh yang tidak sepele adalah dimensi fraktal kepingan salju Koch . Ia mempunyai dimensi topologi 1, namun sama sekali tidak dapat diperbaiki : panjang kurva antara dua titik pada kepingan salju Koch tidak terhingga . Tidak ada bagian kecil darinya yang berbentuk garis, melainkan terdiri dari segmen-segmen yang jumlahnya tak terhingga yang disatukan pada sudut yang berbeda-beda. Dimensi fraktal suatu kurva dapat dijelaskan secara intuitif dengan menganggap garis fraktal sebagai objek yang terlalu detail untuk menjadi satu dimensi, namun terlalu sederhana untuk menjadi dua dimensi.[10] Oleh karena itu, dimensinya paling baik dijelaskan bukan dengan dimensi topologi biasa yaitu 1 tetapi dengan dimensi fraktalnya, yang sering kali berupa angka antara satu dan dua; dalam kasus kepingan salju Koch, nilainya kira-kira 1,2619.

  1. ^ Falconer, Kenneth (2003). Fractal Geometry. Wiley. hlm. 308. ISBN 978-0-470-84862-3. 
  2. ^ Sagan, Hans (1994). Space-Filling Curves. Springer-Verlag. hlm. 156. ISBN 0-387-94265-3. 
  3. ^ Vicsek, Tamás (1992). Fractal growth phenomena. World Scientific. hlm. 10. ISBN 978-981-02-0668-0. 
  4. ^ Mandelbrot, B. (1967). "How Long is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension". Science. 156 (3775): 636–8. Bibcode:1967Sci...156..636M. doi:10.1126/science.156.3775.636. PMID 17837158. 
  5. ^ Benoit B. Mandelbrot (1983). The fractal geometry of nature. Macmillan. ISBN 978-0-7167-1186-5. Diakses tanggal 1 February 2012. 
  6. ^ Falconer, Kenneth (2003). Fractal GeometryAkses gratis dibatasi (uji coba), biasanya perlu berlangganan. Wiley. hlm. 308. ISBN 978-0-470-84862-3. 
  7. ^ Sagan, Hans (1994). Space-Filling CurvesAkses gratis dibatasi (uji coba), biasanya perlu berlangganan. Springer-Verlag. hlm. 156. ISBN 0-387-94265-3. 
  8. ^ Vicsek, Tamás (1992). Fractal growth phenomena. World Scientific. hlm. 10. ISBN 978-981-02-0668-0. 
  9. ^ Edgar, Gerald (2007). Measure, Topology, and Fractal Geometry. Springer. hlm. 7. ISBN 978-0-387-74749-1. 
  10. ^ Harte, David (2001). MultifractalsAkses gratis dibatasi (uji coba), biasanya perlu berlangganan. Chapman & Hall. hlm. 3–4. ISBN 978-1-58488-154-4. 

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy